Datasheets
BLM18SG121TN1D by:
Add to list:

Price & Stock for: BLM18SG121TN1D

Distributor Stock MOQ Package QTY Break / Prices
View this part on Avnet Americas 0 1 Cut Tape
  • 1 $0.0294
  • 157 $0.0287
  • 313 $0.0280
  • 625 $0.0273
  • 1,250 $0.0266
View this part on Avnet Americas 0 10,000 Reel
  • 10,000 $0.0324
  • 20,000 $0.0315
  • 40,000 $0.0306
View this part on Newark 0 1 TAPE & REEL CUT
  • 1 $0.1400
  • 10 $0.0820
  • 25 $0.0720
  • 50 $0.0620
  • 100 $0.0520
View this part on Bristol Electronics 20,393 1
View this part on TME Electronic Components 35,780 20
  • 20 $0.0522
  • 100 $0.0373
  • 1,000 $0.0307
  • 10,000 $0.0261

Purchasing Insights: BLM18SG121TN1D

Historical Trends

Estimated Price History

Estimated Stock History

Risk Rank

Risk Rank is a proprietary algorithm Supplyframe has developed to quantify component risk rank using multiple data points. This ranking helps engineers and buyers determine whether alternates should be sought for parts that are deemed as high risk.

Risk Rank Example

Risk Rank is determined by a combination of factors such as product lifecycle status, price & inventory votality, current inventory availability, and much more. Even the availability of manufacturer specifications and part documentation, such as datasheets and reference designs, have an impact on determining the overall riskiness of a part.

The risk is characterized across three product phases:

  • Design
  • Production
  • Long Term

For Purchasing Risk Rank, we focus on the Production and the Long Term Phases on Findchips in our evaluation of Risk.

Production Phase

The production phase is when the product is being assembled. Sourcing parts reliably is the essential task during this phase, as it determines whether the product can continue production. During the production phase, there is no time to test new components if something goes awry – the design is the locked-in and a primary risk factor is the component availability in the marketplace. It is possible to utilize alternative parts if things go wrong during this phase, but they need to be FFF (form, fit, function) compatible. Therefore, if a part is available in the online marketplace and has available FFF components, it will be listed as lower risk.

Long Term Phase

The amount of time that a product is manufactured often depends on the industry. Some automobile electronics are made consistently for 5-10 years, whereas military and industrial electronics could be produced from anywhere from 30-50 years.

This means part risk goes up with the likelihood of obsolescence. If a chip manufacturer decides to stop making a particular chip, it is supremely disruptive to mature products, because there may not even be replacement parts available. Other factors like environmental certifications (RoHS) feed into this as well, as non-certified parts are more likely to become obsolete in the future.

We combine both of these aspects into a Purchasing Risk Rank score in order to focus in on risk elements that would be most pertinent for purchasers to be aware of.

Risk Rank Breakdown

Risk Rank: Purchasing Risk

What is purchasing risk rank?

Purchasing Risk Rank is determined by in-depth analysis across risk factors of production risk and long term risk of a given part.

Market Price Analysis

No data available

Distributors with Stock

Total Inventory

2,120,331

Part Details for: BLM18SG121TN1D

CAD Models

Part Details

Risk Rank

Risk Rank is a proprietary algorithm Supplyframe has developed to quantify component risk rank using multiple data points. This ranking helps engineers and buyers determine whether alternates should be sought for parts that are deemed as high risk.

Risk Rank Example

Risk Rank is determined by a combination of factors such as product lifecycle status, price, inventory votality, current inventory availability, and much more. Even the availability of manufacturer specifications and part documentation, such as datasheets and reference designs, have an impact on determining the overall riskiness of a part.

The risk is characterized across three product phases:

  • Design
  • Production
  • Long Term

We focus on the Design Phase on Findchips in our evaluation of Risk.

Design Phase

The design phase of a product is the beginning of the product lifecycle. This is when engineers are doing analysis of components in the marketplace, determining which specifications are most important for their design and assessing the cost impact of using this particular component. While this is early in the product lifecycle, choices at this point can severely impact a product much later on when the product is being made. Additionally, this stage is the one furthest from a product being made, which is why we focus on metrics of stability over time when determining Design Risk.

Risk Rank Breakdown

Risk Rank: Design Risk

What is design risk rank?

Design Risk Rank is determined by in-depth analysis across risk factors, including part availability, functional equivalents, lifecycle, and more.

Resources and Additional Insights

Reference Designs

  • RF Sampling 4-GSPS ADC Reference Design with 8-GHz DC-Coupled Differential Amplifier
    TIDA-00431: Wideband radio frequency (RF) receivers allow greatly increased flexibility in radio designs. The wide instantaneous bandwidth allows flexible tuning without changing hardware and the ability to capture multiple channels at widely separated frequencies. This reference design describes a wideband RF receiver utilizing a 4-GSPS analog-to-digital converter (ADC), with an 8-GHz, DC-coupled, fully differential amplifier front end. The amplifier front end provides signal gain and allows capture of signals down to DC, which is not possible with a balun-coupled input.
  • Automotive 60W Brushless DC (BLDC) Motor Drive
    TIDA-00143: This TIDA-00143 reference design is a BLDC motor controller and is designed to operate from a single 12V (nominal) power supply which can vary over a wide range of voltages as found in typical automotive applications. The board is designed to drive motors in the 60W range, which require currents of 5 Amps. The size and layout of the board is intended to facilitate evaluation of the drive electronics and firmware, with easy access to key signals on individual test points. Connection to a wide variety of motors is possible using either the 3-contact connector or by soldering motor phase wires to plated-through holes in the board. The 12Vdc power is fused to prevent damage to the board or to bench power supplies in case of a motor fault during testing. Command and status of the motor can be communicated through the standard JTAG connector, or through PWM input and output signals. Users can also re-program the microcontroller through the JTAG connector, allowing customization to a wide variety of applications.
  • Synchronization of JESD204B Giga-Sample ADCs using Xilinx Platform for Phased Array Radar Systems
    TIDA-00432: This system level design shows how two ADC12J4000 evaluation modules (EVMs) can be synchronized together using a Xilinx VC707 platform. The design document describes the required hardware modifications and device configurations, including the clocking scheme. Example configuration files are shown for each EVM. The FPGA firmware is described and the relevant Xilinx IP block configuration parameters are shown. Data taken on the actual hardware is shown and analyzed, showing synchronization within 50 ps without characterized cables or calibrated propagation delays.
  • Schematic and Layout Recommendations for the Giga Sample Per Second (GSPS) ADC
    TIDA-00071: This reference design is a guide to the schematics and layout for the system designer using a GSPS ADC in their system. Use this reference design along with the datasheet — the datasheet is always the final authority. Also, the ADC1xDxxxx(RF)RB Reference Board provides a useful reference design. All design source files for the Reference Board as well as the CAD/CAE symbols for the ADC are available on the product web page or TI-Designs for download. For the purpose of this document, ADC or GSPS ADC refers to the ADC12D1800RF, ADC12D1600RF, ADC12D1000RF, ADC12D800RF, ADC12D500RF, ADC12D1800, ADC12D1600, ADC12D1000, ADC10D1500, ADC10D1000, ADC12D1600QML, and ADC10D1000QML.
  • Clocking Solution Reference Design for GSPS ADCs
    TIDA-00359: Low cost, high performance clocking solution for GSPS data converters. This reference design discusses the use of a TRF3765, a low noise frequency synthesizer, generating the sampling clock for a 4 GSPS analog-to-digital converter (ADC12J4000). Experiments demonstrate data sheet comparable SNR and SFDR performance.

Related Parts

Update Alert Settings for: BLM18SG121TN1D by Murata Manufacturing Co Ltd

  • Please alert me when BLM18SG121TN1D inventory levels are or equal to a quantity of from one of my selected distributors.
No pricing information is available at this time
  • Please alert me when the single part price for BLM18SG121TN1D to
    $
    for at least parts from one of my selected distributors.
    Your Pricing Alert is set to expire on .
    Set this alert to expire in Update this alert to expire · Expired on

Your part alert has been saved!

Alerts are triggered based off of individual distributors that you choose. Select your distributor(s) below.

Your part alert has been saved!

Register
Password Guidelines

Is at least 8 characters in length

Must include at least 3 of the following:

One lower-case character (a-z)

One upper-case character (A-Z)

One numeric character (0-9)

One special character (!#$%^&*)

Alert is successfully saved for BLM18SG121TN1D.
Looks like you've reached your alert limit!  Please delete some alerts or contact us if you need help.

Confirm BOM Data

! Unable to save document.
Please try again.

!

Part Number ( parts) Qty CPN Designator Partent PN

BOM Options

Preferred distributors for this list (10)

Select preferred distributors

!  

Working...

Your Findchips PRO license has expired.

Please update your account details for future billings.

Update Account Details → or Request Extension →

Your account has reached its list limit (3 Lists). To create a new list, an existing list must be removed.